	Digital Logic Design (CE and IT 3 rd Semester)
	Unit 1: Number Systems
1	Any signed negative binary number is recognised by its
	a) MSB
	b) LSB
	c) Byte
	d) Nibble
2	The representation of octal number (532.2)8 in decimal is
2	a) (346 25)10
	b) $(522.864)10$
	(332.804)10
	(340.07)10
2	(1011,011)
3	The decimal equivalent of the binary number $(1011.011)2$ is
	a) $(11.575)10$
	b) $(10.123)10$
	c)(11.175)10
	d) (9.23)10
4	An important drawback of binary system is
	a) It requires very large string of 1's and 0's to represent a decimal number
	b) It requires sparingly small string of 1's and 0's to represent a decimal number
	c) It requires large string of 1's and small string of 0's to represent a decimal
	number
	d) It requires small string of 1's and large string of 0's to represent a decimal
	number
5	The decimal equivalent of the octal number (645)8 is
	a) (450)10
	b) (451)10
	c) (421)10
	d) (501)10
6	The largest two digit hexadecimal number is
0	a) (FE)16
	b) (FD)16
	c) (FF)16
	d) (FF)16
7	Representation of hexadecimal number (6DE)H in decimal
/	$(0) = 16^2 + 13 \times 16^1 + 14 \times 16^0$
	b) $6 * 16^2 + 12 * 16^1 + 13 * 16^0$
	c) $6 * 16^{2} + 11 * 16^{1} + 14 * 16^{0}$
	d) $6 * 16^2 + 14 * 16^1 + 15 * 16^0$
8	The given hexadecimal number $(1E 53)16$ is equivalent to
0	a) (35.68/)8
	b) (36 246)8
	(30.240)(31.
	d) (35,500) 8
9	The octal number $(651, 124)$ is equivalent to
7	(110 octai number (001.124) is equivalent to
	b) $(1R0.10)16$
1	

	c) (1A8.A3)16
	d) (1B0.B0)16
10	The octal equivalent of the decimal number (417)10 is
	a) (641)8
	b) (619)8
	c) (640)8
	d) (598)8
11	Convert the hexadecimal number (1E2)16 to decimal:
	a) 480
	b) 483
	c) 482
	d) 484
12	(170)10 is equivalent to
	a) (FD)16
	b) (DF)16
	c) (AA)16
	d) (AF)16
13	Convert (214)8 into decimal:
	a) (140)10
	b) (141)10
	c) (142)10
	d) (130)10
14	Convert (0.345)10 into an octal number:
	a) (0.16050)8
	b) (0.26050)8
	c) (0.19450)8
	d) (0.24040)8
15	Convert the binary number (01011.1011)2 into decimal:
	a) (11.6875)10
	b) (11.5874)10
	c) (10.9876)10
	d) (10.7893)10
16	Octal to binary conversion: $(24)8 = ?$
	a) (111101)2
	b) (010100)2
	c) $(111100)^2$
17	
17	Convert binary to octal: $(110110001010)2 =?$
	a) (5512)8
	b) (6612)8
	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
10	
18	what is the addition of the binary numbers 11011011010 and 010100101?
	a) 0111001000
	b) 1100110110
	C) 11101111111 A) 10011010011
10	(d) 10011010011
19	Perform binary addition: $101101 + 011011 = ?$
	D) 1010100

	c) 101110
	d) 1001000
20	Perform binary subtraction: $101111 - 010101 = ?$
	a) 100100
	b) 010101
	c) 011010
	d) 011001
21	Binary subtraction of 100101 – 011110 is
	a) 000111
	b) 111000
	c) 010101
	d) 101010
22	Perform multiplication of the binary numbers: $01001 \times 01011 = ?$
	a) 001100011
	b) 110011100
	c) 010100110
	d) 101010111
23	$100101 \times 0110 = ?$
	a) 1011001111
	b) 0100110011
	c) 101111110
	d) 0110100101
24	On multiplication of (10.10) and (01.01) , we get
	a) 101.0010
	b) 0010.101
	c) 011.0010
	d) 110.0011
25	Divide the binary numbers: $111101 \div 1001$ and find the remainder
	a) 0010
	b) 1010
	c) 1100
	d) 0011
26	Divide the binary number (011010000) by (0101) and find the quotient
	b) 101001
	c) 110010
27	d) 010001
21	Binary subtraction of $101101 - 001011 = ?$
	a) 100010
	b) 010110 c) 110101
	(2) 110101 (1) 101100
20	$\frac{1}{1} \frac{1}{2} = 2 \frac{1}{1} $
28	
	(a) 0101110 b) 1001101
	b) 1001101 c) 0100010
	d) 1100101
20	2's complement of 11001011 is
27	2 s complement of 11001011 is
	b) 11010100

	c) 00110101
	d) 11100010
30	If the number of bits in the sum exceeds the number of bits in each added
	numbers, it results in
	a) Successor
	b) Overflow
	c) Underflow
	d) Predecessor
31	1's complement can be easily obtained by using
	a) Comparator
	b) Inverter
	c) Adder
	d) Subtractor
32	The advantage of 2's complement system is that
_	a) Only one arithmetic operation is required
	b) Two arithmetic operations are required
	c) No arithmetic operations are required
	d) Different Arithmetic operations are required
33	The 1's complements requires
00	a) One operation
	b) Two operations
	c) Three operations
	d) Combined Operations
34	Which one is used for logical manipulations?
51	a) 2's complement
	b) 9's complement
	c) 1's complement
	d) 10's complement
35	For arithmetic operations only
	a) 1's complement is used
	b) 2's complement
	c) 10's complement
	d) 9's complement
36	Binary coded decimal is a combination of
20	a) Two binary digits
	b) Three binary digits
	c) Four binary digits
	d) Five binary digits
37	The decimal number 10 is represented in its BCD form as
0,	a) 10100000
	b) 01010111
	c) 00010000
	d) 00101011
38	Add the two BCD numbers: $1001 + 0100 = ?$
50	a) 10101111
	b) 01010000
	c) 00010011
	d) 00101011
39	Code is a symbolic representation of information
57	a) Continuous
1	

	b) Discrete
	c) Analog
	d) Both continuous and discrete
40	When numbers, letters or words are represented by a special group of symbols,
	this process is called
	a) Decoding
	b) Encoding
	c) Digitizing
	d) Inverting
41	The excess-3 code for 597 is given by
	a) 100011001010
	b) 100010100111
	c) 010110010111
10	
42	The decimal equivalent of the excess-3 number 110010100011.01110101 is
	a) 970.42 b) 1252.75
	$\begin{array}{c} 0) 1255.75 \\ \Rightarrow 861.75 \end{array}$
	(2) 801.75
12	0) 1152.07 Desitive integers can be represented as
43	rostive integers can be represented as
	A. Signed numbers
	B. Unsigned numbers
	C. Negative integers
	D. both A and B
44	Representation of -9 with signed magnitude equals to
	A. 10001001
	B 11110110
	C 11110111
	D. 11110011
45	The more convenient system for representing the negative numbers is
45	The more convenient system for representing the negative numbers is
	A Signed complement gratem
	A. Signed-complement system
	B. Unsigned-complement system
	C. Negative integer system
	D. Positive integer system
46	1's complement as a logical operation is equivalent to
	A. Logical design

	I	3. Illogical design
		C. Logical complement
	I	D. Illogical complement
47	The	most commonly used system for representing signed binary numbers is the:
	А.	2's-complement system.
	В.	1's-complement system.
	C.	10's-complement system.
	D.	sign-magnitude system.
48	The	decimal value for E ₁₆ is:
	А.	1210
	B.	1310
	C.	14 ₁₀
	D.	1510
49	The	binary subtraction $0 - 0 =$
	A.	difference = 0 borrow = 0
	B.	difference = 1 borrow = 0
	C.	difference = 1 borrow = 1
	D.	difference = 0 borrow = 1
50	Add	ing in binary, a decimal 26 + 27 will produce a sum of:
	A.	111010
	В.	110110
	C.	110101
	D.	101011

	Unit 2: Boolean Algebra and Logic Gates
1	In boolean algebra, the OR operation is performed by which properties?
	a) Associative properties
	b) Commutative properties
	c) Distributive properties
	d) All of the Mentioned

2	The expression for Absorption law is given by
	a) $\mathbf{A} + \mathbf{A}\mathbf{B} = \mathbf{A}$
	b) $A + AB = B$
	c) $AB + AA' = A$
	d) $A + B = B + A$
3	According to boolean law: $A + 1 = ?$
	a) 1
	b) A
	c) 0
	d) A'
4	The involution of A is equal to
	a) A
	b) A'
	c) 1
	d) 0
5	A(A+B) = ?
	a) AB
	b) 1
	c) $(1 + AB)$
	d) A
6	DeMorgan's theorem states that
	a) $(AB)' = A' + B'$
	b) $(A + B)' = A' * B$
	c) $A' + B' = A'B'$
	d) $(AB)' = A' + B$
7	(A + B)(A' * B') = ?
	a) 1
	b) 0
	c) AB
	d) AB'
8	Complement of the expression A'B + CD' is
	a) $(A' + B)(C' + D)$
	b) (A + B')(C' + D)
	c) $(A' + B)(C' + D)$
	d) $(A + B')(C + D')$
9	Simplify $Y = AB' + (A' + B)C$.
	a) AB' + C
	b) $AB + AC$
	c) $A'B + AC'$
	d) AB + A
10	The boolean function A + BC is a reduced form of
	a) $AB + BC$
	b) $(\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{C})$
	c) $A'B + AB'C$
	d) (A + C)B
11	The logical sum of two or more logical product terms is called
	a) SOP
	b) POS
	c) OR operation
	d) NAND operation

12	The expression Y=AB+BC+AC shows the operation.
	a) EX-OR
	b) SOP
	c) POS
	d) NOR
13	The expression $Y = (A+B)(B+C)(C+A)$ shows the operation.
	a) AND
	b) POS
	c) SOP
	d) NAND
14	A product term containing all K variables of the function in either complemented
	or uncomplemented form is called a
	a) Minterm
	b) Maxterm
	c) Midterm
	d) Σ term
15	According to the property of minterm, how many combination will have value
	equal to 1 for K input variables?
	b) 1
	c) 2
	d) 3
16	The canonical sum of product form of the function $v(A,B) = A + B$ is
	a) $AB + BB + A'A$
	b) $AB + AB' + A'B$
	c) $BA + BA' + A'B'$
	d) $AB' + A'B + A'B'$
17	A variable on its own or in its complemented form is known as a
	a) Product Term
	b) Literal
	c) Sum Term
	d) Word
18	Maxterm is the sum of of the corresponding Minterm with its literal
	complemented.
	a) Terms
	b) Words
	c) Numbers
	d) Nibble
19	Canonical form is a unique way of representing
	a) SOP
	b) Minterm
	c) Boolean Expressions
	d) POS
20	There are Minterms for 3 variables (a, b, c).
	a) 0
	b) 2
	c) 8
	d) 1
21	expressions can be implemented using either (1) 2-level AND-
	OR logic circuits or (2) 2-level NAND logic circuits.

	a) POS
	b) Literals
	c) SOP
	d) POS
22	A Karnaugh map (K-map) is an abstract form of diagram
	organized as a matrix of squares.
	a) Venn Diagram
	b) Cycle Diagram
	c) Block diagram
	d) Triangular Diagram
23	There are cells in a 4-variable K-map.
_	a) 12
	b) 16
	c) 18
	d) 8
24	Each product term of a group w'x y' and wy represents the in
21	that group
	a) Input
	b) POS
	c) Sum-of-Minterms
	d) Sum of Maxterms
25	Product of Sums expressions can be implemented using
23	a) 2-level OR-AND logic circuits
	b) 2 level NOP logic circuits
	c) 2 level XOP logic circuits
	d) Both 2 level OB AND and NOB logic circuits
26	U) Both 2-level OK-AND and NOK logic circuits
20	bach group of adjacent Winternis (group size in powers of twos) corresponds to a
	a) Eurotion
	a) Function b) Value
	b) value
	d) Word
27	d) word Don't care conditions can be used for simplifying Peoleen expressions in
21	Don't care conditions can be used for simplifying Boolean expressions in
	a) Pagistara
	a) Registers
	b) Termis
	d) Latahas
20	U) Lateries
28	Using the transformation method you can realize any POS realization of OR-AND with only
	with only.
	a) AUK
	b) NAND
	c) AND
•	
29	There are many situations in logic design in which simplification of logic
	expression is possible in terms of XOR and operations.
	a) X-NOR
	b) XOR
	c) NOR
1	d) NAND

30	These logic gates are widely used in design and therefore are
	available in IC form.
	a) Sampling
	b) Digital
	c) Analog
	d) Systems
31	A single transistor can be used to build which of the following digital logic gates?
	a) AND gates
	b) OR gates
	c) NOT gates
	d) NAND gates
32	How many AND gates are required to realize $Y = CD + EF + G$?
	a) 4
	b) 5
	c) 3
	d) 2
33	The NOR gate output will be high if the two inputs are
	a) 00
	b) 01
	c) 10
	d) 11
34	How many two-input AND and OR gates are required to realize $Y = CD+EF+G$?
	a) 2, 2
	b) 2, 3
	c) 3, 3
	d) 3, 2
35	A universal logic gate is one which can be used to generate any logic function.
	Which of the following is a universal logic gate?
	a) OR
	b) AND
	c) XOR
	d) NAND
36	How many two input AND gates and two input OR gates are required to realize Y
	= BD + CE + AB?
	a) 3, 2
	(0) 4, 2
	(C) [1, 1]
27	(d) 2, 5 Which of following one known of writered actor?
57	a) NAND & NOP
	b) AND & OR
	c) $XOR & OR$
	d) EX-NOR & XOR
38	A single transistor can be used to build which of the following digital logic gates?
50	a) AND gates
	b) OR gates
	c) NOT gates
	d) NAND gates
39	How many truth table entries are necessary for a four-input circuit?
	a) 4

	b) 8
	c) 12
	d) 16
40	Which input values will cause an AND logic gate to produce a HIGH output?
	a) At least one input is HIGH
	b) At least one input is LOW
	c) All inputs are HIGH
	d) All inputs are LOW
41	Exclusive-OR (XOR) logic gates can be constructed from what other logic gates?
	a) OR gates only
	b) AND gates and NOT gates
	c) AND gates, OR gates, and NOT gates
	d) OR gates and NOT gates
42	The basic logic gate whose output is the complement of the input is the
	a) OR gate
	b) AND gate
	c) INVERTER gate
	d) XOR gate
43	The AND function can be used to and the OR function can be used
	to
	a) Enable, disable
	b) Disable, enable
	c) Synchronize, energize
	d) Detect, invert
44	If we use an AND gate to inhibit a signal from passing one of the inputs must be
	a) LOW
	b) HIGH
	c) Inverted
	d) Floating
45	Logic gate circuits contain predictable gate functions that open theirs
	a) Outputs
	b) Inputs
	c) Pre-state
	d) Impedance state
46	How many NAND circuits are contained in a 7400 NAND IC?
	a) 1
	b) 2
	c) 4
	d) 8
47	The OR gate output will be LOW if the two inputs are
	a) 00
	b) 01
	c) 10
40	
48	The expression $Y = (A+B) (B+C)$ shows the operation.
1	
	a) EX-OR

	c) POS
	d) NOR
49	There are cells in a 3-variable K-map.
	a) 12
	b) 16
	c) 18
	d) 8
50	There are cells in a 2-variable K-map.
	a) 12
	b) 4
	c) 18
	d) 8

	Unit 3: Combinational Logic Design
1	A full adder logic circuit will have
	a) Two inputs and one output
	b) Three inputs and three outputs
	c) Two inputs and two outputs
	d) Three inputs and two outputs
2	The gates required to build a half adder are
	a) EX-OR gate and NOR gate
	b) EX-OR gate and OR gate
	c) EX-OR gate and AND gate
	d) EX-NOR gate and AND gate
3	What are the two types of basic adder circuits?
	A. sum and carry
	B. half-adder and full-adder
	C asynchronous and synchronous
	D. one- and two's-complement
4	How many inputs must a full-adder have?
	A. 4
	B. 2
	C. 5
	D. 3
5	Which of the statements below best describes the given figure?

	1 — Σ Σ
	1 Q CO
	A. Half-carry adder; Sum = 0, Carry = 1
	B. Half-carry adder; $Sum = 1$, $Carry = 0$
	C. Full-carry adder; $Sum = 1$, $Carry = 0$
	D. Full-carry adder; $Sum = 1$, $Carry = 1$
6	A full-adder adds
	A. two single bits and one carry bit
	B. two 2-bit binary numbers
	C. two 4-bit binary numbers
	D. two 2-bit numbers and one carry bit
7	The basic building blocks of the arithmetic unit in a digital computers are
	a) Subtractors
	b) Adders
	c) Multiplexer
	d) Comparator
8	A digital system consists of types of circuits.
	a) 2
	b) 3
	d) 5
9	In a combinational circuit, the output at any time depends only on the at
	that time.
	a) Voltage
	b) Intermediate values
	c) Input values
10	d) Clock pulses
10	a) AND and NAND operations
	b) OR and NOR operations
	c) OR and NOT operations
	d) NAND and NOR operations
11	The design of an ALU is based on
	a) Sequential logic

	b) Combinational logic
	c) Multiplexing
	d) De-Multiplexing
12	If the two numbers are unsigned, the bit conditions of interest are the carry
	and a possible result.
	a) Input, zero
	b) Output, one
	c) Input, one
	d) Output, zero
13	The flag bits in an ALU is defined as
10	a) The total number of registers
	b) The status bit conditions
	c) The total number of control lines
	d) All of the Mentioned
14	Total number of inputs in a half adder is
14	a) 2
	b) 3
	(c) A
	d) 1
15	In which operation carry is obtained?
15	a) Subtraction
	b) Addition
	c) Multiplication
	d) Both addition and subtraction
16	If A and B are the inputs of a half adder, the sum is given by
10	a) A AND P
	a) A AND D b) A OD D
	d) A EX NOP B
17	U) A EA-NOR D If A and B are the inputs of a half adder, the carry is given by
17	a) A AND B
	a) A AND D b) A OP P
	$(c) \land \mathbf{YOP B}$
	d) A EX-NOR B
10	The difference between helf edder and full edder is
10	a) Half adder has two inputs while full adder has four inputs
	b) Half adder has one output while full adder has two outputs
	a) Helf edder hes two inputs while full edder hes three inputs
	d) All of the Mentioned
10	If A P and C are the inputs of a full adder then the sum is given by
19	a) A AND P AND C
	a) A AND D AND C
	b) A OK B AND C
20	U) A OK B OK C
20	How many AND, OR and EXOR gates are required for the configuration of full
	a_{j} 1, 2, 2 b) 2, 1, 2
	(0) 2, 1, 2
	(0, 0, 1, 2)
	a) 4, 0, 1

21	Half subtractor is used to perform subtraction of
	a) 2 bits
	b) 3 bits
	c) 4 bits
	d) 5 bits
22	For subtracting 1 from 0, we use to take a from neighbouring bits.
	a) Carry
	b) Borrow
	c) Input
	d) Output
23	How many outputs are required for the implementation of a subtractor?
	a) 1
	b) 2
	c) 3
	d) 4
24	Let the input of a subtractor is A and B then what the output will be if $A = B$?
	a) 0
	b) 1
	c) A
	d) B
25	Let A and B is the input of a subtractor then the output will be
	a) A XOR B
	b) A AND B
	c) A OR B
	d) A EXNOR B
26	Full subtractor is used to perform subtraction of
	a) 2 bits
	b) 3 bits
	c) 4 bits
27	d) 8 bits
21	A AND B YOR Y
	a) A AND B AOK A b) A VOD P VOD V
	d) A NOR B YOR Y
28	The output of a full subtractor is same as
20	a) Half adder
	b) Full adder
	c) Half subtractor
	d) Decoder
29	Which of the following logic expressions represents the logic diagram shown?
_>	

	a) X=AB'+A'B
	b) $X=(AB)'+AB$
	c) $X = (AB)' + A'B'$
	d) X=A'B'+AB
30	The device shown here is most likely a
	$\phi - \overline{\gamma_1}$
	$S_0 \longrightarrow V_2$
	- Y ₃
	a) Comparator
	b) Multiplexer
	c) Inverter
	d) Demultiplexer
31	3 bits full adder contains
51	a) 3 combinational inputs
	b) 4 combinational inputs
	c) 6 combinational inputs
	d) 8 combinational inputs
32	What is a multiplexer?
	a) It is a type of decoder which decodes several inputs and gives one output
	b) A multiplexer is a device which converts many signals into one
	c) It takes one input and results into many output
	d) It is a type of encoder which decodes several inputs and gives one output
33	What is the function of an enable input on a multiplexer chip?
	a) To apply Vcc
	b) To connect ground
	c) To active the entire chip
	d) To active one half of the chip
34	In a multiplexer, the selection of a particular input line is controlled by
	a) Data controller
	b) Selected lines
	c) Logic gates
	d) Both data controller and selected lines
35	If the number of n selected input lines is equal to 2 [^] m then it requires select
	lines.
	a) 2
	b) m
	c) n
	d) 2^n
36	How many select lines would be required for an 8-line-to-1-line multiplexer?
	a) 2
	b) 4
	c) 8
	d) 3
37	How many NOT gates are required for the construction of a 4-to-1 multiplexer?
	a) 3

	b) 4
	c) 2
	d) 5
38	In 1-to-4 demultiplexer, how many select lines are required?
	a) 2
	b) 3
	c) 4
	d) 5
39	How many AND gates are required for a 1-to-8 multiplexer?
	a) 2
	b b
	\mathbf{c}
	d) 5
40	How many OR gates are required for an octal-to-binary encoder?
10	a) 3
	b) 2
	$\left(0\right) $
	d) 10
41	Can an encoder be called as multiplexer?
1	a) No
	h) Ves
	c) Sometimes
	d) Never
42	How many inputs are required for a 1 of 10 PCD decoder?
42	a) A
	$\frac{a}{4}$
	b) 8 c) 10
	d 2
13	How many inputs are required for a 1-of-16 decoder?
	a) 2
	b) 16
	c) 8
	d) 4
11	Reflected binary code is also known as
	a) BCD code
	b) Binary code
	c) Δ SCII code
	d) Gray Code
45	Why do we use gray codes?
	a) To count the no of hits changes
	b) To rotate a shaft
	c) From correction
	d) Error Detection
16	Convert binary number into gray code: 100101
40	101101
	a) 101101
	a) 110111
	d) 111001
17	0) 111001 One that is not the outcome of magnitude comparator is
4/	One that is not the outcome of magnitude comparator is
1	a > 0

	b) a – b
	c) a < b
	d) $a = b$
48	If two numbers are not equal then binary variable will be
	a) 0
	b) 1
	c) A
	d) B
49	In a comparator, if we get input as A>B then the output will be
	a) 1
	b) 0
	c) A
	d) B
50	Which one is a basic comparator?
	a) XOR
	b) XNOR
	c) AND
	d) NAND

	Unit 4: Sequential Circuits
1	In a sequential circuit, the output at any time depends only on the input values at
	that time.
	a) Past output values
	b) Intermediate values
	c) Both past output and present input
	d) Present input values
2	A latch is an example of a
	a) Monostable multivibrator
	b) Astable multivibrator
	c) Bistable multivibrator
	d) 555 timer
3	Latch is a device with
	a) One stable state
	b) Two stable state
	c) Three stable state
	d) Infinite stable states
4	Why latches are called a memory devices?
	a) It has capability to stare 8 bits of data
	b) It has internal memory of 4 bit
	c) It can store one bit of data
	d) It can store infinite amount of data
5	Two stable states of latches are
	a) Astable & Monostable
	b) Low input & high output
	c) High output & low output
	d) Low output & high input
6	The full form of SR is
	a) System rated
	b) Set reset

	c) Set ready
	d) Set Rated
7	The SR latch consists of
	a) 1 input
	b) 2 inputs
	c) 3 inputs
	d) 4 inputs
8	The outputs of SR latch are
	a) x and y
	b) a and b
	c) s and r
	d) q and q'
9	When both inputs of a J-K flip-flop cycle, the output will
	a) Be invalid
	b) Change
	c) Not change
	d) Toggle
10	A basic S-R flip-flop can be constructed by cross-coupling of which basic logic
	gates?
	a) AND or OR gates
	b) XOR or XNOR gates
	c) NOR or NAND gates
	d) AND or NOR gates
11	Whose operations are more faster among the following?
	a) Combinational circuits
	b) Sequential circuits
	c) Latches
	d) Flip-flops
12	How many types of sequential circuits are?
	a) 2
	b) 3
	c) 4
	d) 5
13	The sequential circuit is also called
	a) Flip-flop
	b) Latch
	c) Strobe
1.4	d) Adder
14	The characteristic of J-K flip-flop is similar to
	a) S-K IIIp-IIOp
	D) D IIIp-IIOp
	d) Gated T flip flop
15	() Galed 1 IIIp-110p
15	A J-K Inp-nop can be obtained from the clocked S-K Inp-nop by augmenting
	a) Two AND gates
	b) Two NAND gates
	c) Two NOT gates
	d) Two OR gates

16	How is a J-K flip-flop made to toggle?
	a) $J = 0, K = 0$
	b) $J = 1, K = 0$
	c) $J = 0, K = 1$
	d) $J = 1, K = 1$
17	In J-K flip-flop, "no change" condition appears when
	a) $J = 1$, $K = 1$
	b) $I = 1, K = 0$
	c) $J = 0$, $K = 1$
	d) $J = 0, K = 0$
18	On a J-K flip-flop, when is the flip-flop in a hold condition?
10	a) $\mathbf{J} = 0$, $\mathbf{K} = 0$
	b) $I = 1$ K = 0
	C = 1, K = 0 C $I = 0, K = 1$
	d) $I = 1$ K = 1
10	d/3 = 1, K = 1 How many types of flip-flops are?
17	a) 2
	$\frac{a}{2}$
	\mathbf{O}
	d) 5
20	The S. P. flip flop consist of
20	a) 4 AND gates
	a) + AND gaics b) Two additional AND gates
	c) An additional clock input
	d) 3 AND gates
21	What is one disadvantage of an S. P. flin flon?
21	a) It has no Enable input
	a) It has to Endote input
	c) It has no clock input
	d) Invalid State
22	What is the hold condition of a flip flop?
	a) Both S and D inputs activated
	a) Both S and K inputs activated b) No potivo S or D input
	b) No active S of K input
	d) Only B is active
22	The characteristic of L K flip flop is similar to
23	a) S. D. Gin. flop.
	a) 5-K IIIp-IIop
	c) T flip flop
	d) Coted T flip flop
24	In D flin flon D stonds for
24	a) Distant
	a) Distant
	b) Data
	d) Delay
25	The D flin flop has input
23	1 Inp-10p has input.
	$\begin{bmatrix} a \\ b \end{bmatrix} 2$
	(0) 2
1	U/ 4

26	The D flip-flop has output/outputs.
	a) 2
	b) 3
	c) 4
	d) 1
27	A D flip-flop can be constructed from an flip-flop.
	a) S-R
	b) J-K
	c) T
	d) S-K
28	In D flip-flop, if clock input is HIGH & D=1, then output is
	a) 0
	b) 1
	c) Forbidden
	d) Toggle
29	In D flip-flop, if clock input is LOW, the D input
	a) Has no effect
	b) Goes high
	c) Goes low
	d) Has effect
30	The characteristic equation of D-flip-flop implies that
	a) The next state is dependent on previous state
	b) The next state is dependent on present state
	c) The next state is independent of previous state
	d) The next state is independent of present state
31	The asynchronous input can be used to set the flip-flop to the
	a) 1 state
	b) 0 state
	c) either 1 or 0 state
	d) forbidden State
32	Input clock of RS flip-flop is given to
	a) Input
	b) Pulser
	c) Output
- 22	d) Master slave flip-flop
33	D flip-flop is a circuit having
	a) 2 NAND gates
	b) 3 NAND gates
	c) 4 NAND gates
24	d) 5 NAND gates
54	a) Level triggered flip flop
	a) Level triggered flip flop
	a) Edge triggered flip flop
	d) Edge Level triggered flip flop
35	In a positive edge triggered IK flip flop a low I and low K produces?
55	a) High state
	b) Low state
	c) Toggle state
	d) No Change State

36	Which of the following is the Universal Flip-flop?			
	a) S-R flip-flop			
	b) J-K flip-flop			
	c) Master slave flip-flop			
	d) D Flip-flop			
37	Flip-flops are			
	a) Stable devices			
	b) Astable devices			
	c) Bistable devices			
	d) Monostable devices			
38	UP-DOWN counter is a combination of			
	a) Latches			
	b) Flip-flops			
	c) UP counter			
	d) Up counter & down counter			
39	In 4-bit up-down counter, how many flip-flops are required?			
	a) 2			
	b) 3			
	c) 4			
	d) 5			
40	The register is a type of			
	a) Sequential circuit			
	b) Combinational circuit			
	c) CPU			
	d) Latches			
41	How many types of registers are?			
	a) 2			
	b) 3			
	c) 4			
	d) 5			
42	The full form of SIPO is			
	a) Serial-in Parallel-out			
	b) Parallel-in Serial-out			
	c) Serial-in Serial-out			
	d) Serial-In Peripheral-Out			
43	A register is able to hold			
	a) Data			
	b) Word			
	c) Nibble			
	d) Both data and word			
44	The full form of ROM is			
	a) Read Outside Memory			
	b) Read Out Memory			
	c) Read Only Memory			
	d) Read One Memory			
45	KOM consist of			
	a) NOK and OK arrays			
	b) NAND and NOR arrays			
	c) NAND and OR arrays			
	a) NOK and AND arrays			

46	The full form of PROM is
	a) Previous Read Only Memory
	b) Programmable Read Out Memory
	c) Programmable Read Only Memory
	d) Previous Read Out Memory
47	Which of the following comes under secondary memory/ies?
	a) Floppy disk
	b) Magnetic drum
	c) Hard disk
	d) All of the Mentioned
48	A Random Access Memory is one in which
	a) Any location can be accessed sequentially
	b) Any location can be accessed randomly
	c) Any location can be accessed serially
	d) Any location can be accessed parallely
49	An example of RAM is
	a) Floppy disk
	b) Hard disk
	c) Magnetic tape memory
	d) Semiconductor RAM
50	A static memory is one in which
	a) Content changes with time
	b) Content doesn't changes with time
	c) Memory is static always
	d) Memory is dynamic always

	Unit 5: Register Transfer Logic		
1	CPU has built-in ability to execute a particular set of machine instructions, called		
	as		
	a) Instruction Set		
	b) Registers		
	c) Sequence Set		
	d) User instructions		
2 The length of a register is called			
	a) word limit		
b) word size			
	c) register limit		
	d) register size		
3	The holds the contents of the accessed memory word.		
	a) MAR		
	b) MBR		
	c) PC		
	d) IR		
4	Which of the following is not a visible register?		
	a) General Purpose Registers		
	b) Address Register		
	c) Status Register		
	d) MAR		

5	Which of the following is a data transfer instruction?			
	a) STA 16-bit address			
	b) ADD A, B			
	c) MUL C, D			
	d) RET			
6	What is correct instruction if you want the control to go to the location 2000h?			
	a) MOV 2000h			
	b) MOV A, 2000h			
	c) JMP 2000h			
-	d) RET 2000h What kind of a flag is the sign flag?			
/	What kind of a flag is the sign flag?			
	a) General Purpose			
	c) Address			
	d) Instruction			
8	The number of sign bits in a 32-bit IEEE format			
0	a) 1			
	b) 11			
	c) 9			
	d) 23			
9	New CPU whose instruction set includes the instruction set of its predecessor			
	CPU is said to be with its predecessor.			
	a) fully compatible			
	b) forward compatible			
	c) compatible			
10	d) backward compatible			
10	A multiplexer of 2" inputs has			
	A. n-1 selection lines			
	B. n selection lines			
	C. n+1 selection lines			
	D. 2 ⁿ selection lines			
11	Binary numbers are stored in groups of flip flops called			
	A. buses			
	B. registers			
	B. registers C. latches			
	B. registersC. latchesD. MOSFETs			
12	B. registers C. latches D. MOSFETs A device that selects one of several analog or digital input signals and forwards			
12	B. registers C. latches D. MOSFETs A device that selects one of several analog or digital input signals and forwards the selected input into a single line is called			
12	B. registers C. latches D. MOSFETs A device that selects one of several analog or digital input signals and forwards the selected input into a single line is called A. multiplier			
12	 B. registers C. latches D. MOSFETs A device that selects one of several analog or digital input signals and forwards the selected input into a single line is called A. multiplier B. multiplexer 			
12	 B. registers C. latches D. MOSFETs A device that selects one of several analog or digital input signals and forwards the selected input into a single line is called A. multiplier B. multiplexer C. divider 			
12	B. registers C. latches D. MOSFETs A device that selects one of several analog or digital input signals and forwards the selected input into a single line is called A. multiplier B. multiplexer C. divider D. demultiplexer			
12	 B. registers C. latches D. MOSFETs A device that selects one of several analog or digital input signals and forwards the selected input into a single line is called A. multiplier B. multiplexer C. divider D. demultiplexer The outputs of each register are a bundle of wires called 			
12	 B. registers C. latches D. MOSFETs A device that selects one of several analog or digital input signals and forwards the selected input into a single line is called A. multiplier B. multiplexer C. divider D. demultiplexer The outputs of each register are a bundle of wires called A. buses 			
12	 B. registers C. latches D. MOSFETs A device that selects one of several analog or digital input signals and forwards the selected input into a single line is called A. multiplier B. multiplexer C. divider D. demultiplexer The outputs of each register are a bundle of wires called A. buses B. flip flops 			

	D. MOSFETs				
14	If $(101.01)_2 = (x)_{10}$, then what is the value of x?				
	a) 505.05				
	b) 10.101				
	c) 101.01				
	d) 5.25				
15	If 0 <e<255, about="" following="" is="" of="" statement="" th="" the="" then="" true="" which="" x?<=""></e<255,>				
	a) Fractional number				
	b) Infinity				
	c) Mixed number				
	d) Zero				
16	The numbers written to the power of 10 in the representation of decimal number				
	are called as				
	a) Height factors				
	b) Size factors				
	c) Scale factors				
	d) None of the mentioned				
17	If the decimal point is placed to the right of the first significant digit, then the				
	number is called				
	a) Orthogonal				
	b) Normalized				
	c) Determinate				
	d) None of the mentioned				
18	constitute the representation of the floating number.				
	a) Sign				
	b) Significant digits				
	c) Scale factor				
	d) All of the mentioned				
19	The sign followed by the string of digits is called as				
	a) Significant				
	b) Determinant				
	c) Mantissa				
	d) Exponent				
20	In IEEE 32-bit representations, the mantissa of the fraction is said to occupy				
	bits.				
	a) 24				
	b) 23				
	c) 20				
21	The normalized representation of 0.0010110 * 2 9 is				
	b) 0 10000101 0110				
	c) 0 10101010 1110				
22	(1) U 11110100 11100 The 22 hit representation of the desimal number is called as				
	a) Double-precision				
	b) Single-precision				
	c) Extended format				
	d) None of the mentioned				
1					

23	In 32 bit representation the scale factor as a range of			
	a) -128 to 127			
	b) -256 to 255			
	c) 0 to 255			
	d) None of the mentioned			
24	In double precision format, the size of the mantissa is			
	a) 32 bit			
	b) 52 bit			
	c) 64 bit			
	d) 72 bit			
25	Which operations are used for addition, subtraction, increment, decrement and			
	complement function:			
	a. Bus			
	b. Memory transfer			
	c. Arithmetic operation			
	d. All of these			
26	In which transfer the computer register are indicated in capital letters for depicting			
	its function:			
	a) Memory transfer			
	b) Register transfer			
	c) Bus transfer			
	d) None of these			
27	The register that includes the address of the memory unit is termed as the :			
	a. MAR			
	b. PC			
	c. IR			
	d. None of these			
28	The register for the program counter is signified as :			
	a. MAR			
	b. PC			
	c. IR			
	d. None of these			
29	How many types of micro operations:			
	a. 2			
	b. 4			
	c. 6			
	d. 8			
30	Which are the operation that a computer performs on data that put in register:			
	a. Register transfer			
	b. Arithmetic			
	c. Logical			
	d. All of these			
31	Which micro operations carry information from one register to another:			
	a. Register transfer			
	b. Arithmetic			
	c. Logical			
	d. All of these			
32	Micro operation is shown as:			
	a. R1->R2			

	b. R1<-R2			
	c. Both			
	d. None			
33	In memory transfer location address is supplied by that puts this on address			
	bus:			
	a. ALU			
	b. CPU			
	c. MAR			
	d. MDR			
34	Arithmetic operation are carried by such micro operation on stored numeric data			
	available in:			
	a. Register			
	b. Data			
	c. Both			
	d. None			
35	In arithmetic operation numbers of register and the circuits for addition at:			
	a. ALU			
	b. MAR			
	c. Both			
	d. None			
36	Which operation are implemented using a binary counter or combinational			
	circuit:			
	a. Register transfer			
	b. Arithmetic			
	c. Logical			
	d. All of these			
37	Which operation are binary type, and are performed on bits string that is placed			
	in register:			
	a. Logical micro operation			
	b. Arithmetic micro operation			
	c. Both			
	d. None			
38	A micro operation every bit of a register is a:			
	a. Constant			
	b. Variable			
	c. Both			
	d. None			
39	Which operation is extremely useful in serial transfer of data:			
	a. Logical micro operation			
	b. Arithmetic micro operation			
	c. Shift micro operation			
	d. None of these			
40	IR stands for:			
	a. Input representation			
	b. Intermediate representation			
	c. Both			
	d. None			
41	Which language specifies a digital system which uses specified notation:			
	a. Register transfer			
	b. Arithmetic			

	c. Logical			
	d. All of these			
42	In register transfer which system is a sequential logic system in which flip-flops			
	and gates are constructed:			
	a. Digital system			
	b. Register			
	c. Data			
	d. None			
43	A counter is incremented by one and memory unit is considered as a collection of			
	:			
	a. Transfer register			
	b. Storage register			
	c. RTL			
	d. All of these			
44	Which is the straight forward register transfer the data from register to another			
	register temporarily:			
	a. Digital system			
	b. Register			
	c. Data			
	d. Register transfer operations			
45	Register are assumed to use positive-edge-triggered:			
	a. Flip-flop			
	b. Logics			
	c. Circuit			
	d. Operation			
46	The memory bus is also referred as:			
	a. Data bus			
	b. Address bus			
	c. Memory bus			
	d. All of these			
47	How many parts of memory bus:			
	a. 2			
	b. 3			
	c. 5			
40				
48	In 3 state gate two states act as signals equal to:			
	a. Logic 0			
	b. Logic I			
	c. None of these			
40				
49	every bit of register has:			
	a. 2 common line			
	b. 3 common line			
	c. I common line			
50	u. none of these Which execution refer bitudies manipulation of contents of manipulation			
50	which operation refer bitwise manipulation of contents of register:			
	a. Logical micro operation			
	b. Anumetic micro operation			
	a Shift micro aparetion			
	c. Shift micro operation			

	Unit 6: Processor Logic Design		
1	Which symbol will be used to denote an micro operation:		
	a. (^)		
	b. (v)		
	c. Both		
	d. None		
2	which symbol will be denote an AND micro operation:		
	a. (^)		
	b. (v)		
	c. Both		
	d. None		
3	Which operation are associated with serial transfer of data:		
	a. Logical micro operation		
	b. Arithmetic micro operation		
	c. Shift micro operation		
	d. None of these		
4	The bits are shifted and the first flip-flop receives its binary information from		
	the:		
	a. Serial output		
	b. Serial input		
	c. Both		
	d. None		
5	How many types of shift micro operation:		
	a. 2		
	b. 4		
-			
6	which shift is a shift micro operation which is used to shift a signed binary number to the left or right.		
	number to the left of right:		
	a. Logical		
	a Both		
	d None of these		
7	which shift is used for signed binary number:		
/	a Logical		
	h Arithmetic		
	c Both		
	d. None of these		
8	which shift is used for signed binary number:		
-	a. Logical		
	b. Arithmetic		
	c. Both		
	d. None of these		
9	The variable of correspond to hardware register:		
	a. RAM		
	b. RTL		
	c. ALU		
	d. MAR		

10	In which shift is used to divide a signed number by two:			
	a. Logical right-shift			
	b. Arithmetic right shift			
	c. Logical left shift			
	d. Arithmetic left shift			
11	The external system bus architecture is created using from architecture:			
	a. Pascal			
	b. Dennis Ritchie			
	c. Charles Babbage			
	d. Von Neumann			
12	The network of wires or electronic path ways on mother board back side:			
	a. PCB			
	b. BUS			
	c. BOTH A and B			
	d. None of these			
13	Which bus carry addresses:			
	a. System bus			
	b. Address bus			
	c. Control bus			
	d. Data bus			
14	A 16 bit address bus can generate addresses:			
	a. 32767			
	b. 25652			
	c. 65536			
	d. none of these			
15	CPU can read & write data by using :			
	a. Control bus			
	b. Data bus			
	c. Address bus			
	d. None of these			
16	Which bus transfer singles from the CPU to external device and others that carry			
	singles from external device to the CPU:			
	a. Control bus			
	b. Data bus			
	c. Address bus			
15	d. None of these			
17	When memory read or I/O read are active data is to the processor :			
	a. Input			
	b. Output			
	c. Processor			
10	d. None of these			
18	when memory write or I/O read are active data is from the processor:			
	a. Input			
	D. Output			
	C. Processor			
10	u. None of these Fach memory location has:			
19	Each memory location has:			
	a. Address			
	0. Contents			
	C. DOUI A allu D			

	d. N	None of these
20	Customized ROMS are called:	
	a. N	Mask ROM
	b. F	Flash ROM
	c	EPROM
	d. N	None of these
21	Which is the t	ype of microcomputer memory:
	a. 1	Processor memory
	b. H	Primary memory
	c.	Secondary memory
	d.	All of these
22	Which bus pla	ays a crucial role in I/O:
	a.	System bus
	b. (Control bus
	c	Address bus
	d. H	Both A and B
23	Which registe	r is connected to the memory by way of the address bus:
	a. I	MAR
	b. N	MDR
	с.	SAM
	d. N	None of these
24	How many bit	t of MAR register:
	a.	8-bit
	b. 1	16-bit
	c	32-bit
	d. 6	54-bit
25	Which are the	e READ operation can in simple steps:
	a	Address
	b. I	Data
	c	Control
	d.	All of these
26	The information on the data bus is transferred to theregister:	
	a	MOC
	b. I	MDR
	c.	VAM
	d. (CPU
27	The lower red	curvy arrow show that CPU places the address extracted from the
	memory locat	ion on the:
	a. <i>A</i>	Address bus
	b. S	System bus
	c. (Control bus
	d. I	Data bus
28	The CPU send	ds out a signal to indicate that valid data is available on the data
	bus:	
	a. 1	Read
	b.	Write
	c	Both A and B
	d. N	None of these
29	The pl	ace the data from a register onto the data bus:
	a. (CPU

	b. ALU		
	c. Both A and B		
	d. None of these		
30	The CPU removes the signal to complete the memory write operation:		
	a. Read		
	b. Write		
	c. Both A and B		
	d. None of these		
31	DS Stand for:		
	a. Data segment		
	b. Direct segment		
	c. Declare segment		
	d. Divide segment		
32	IP Stand for:		
	a. Instruction pointer		
	b. Instruction purpose		
	c. Instruction paints		
	d. None of these		
33	How many bits the instruction pointer is wide:		
	a. 16 bit		
	b. 32 bit		
	c. 64 bit		
	d. 128 bit		
34	AD stand for:		
	a. Address data		
	b. Address delete		
	c. Address date		
25	d. Address deal		
35	PC stand for:		
	a. program counter		
	b. project counter		
	c. protect counter		
26	d. planning counter		
36	which are the categorized of flag:		
	a. Conditional flag		
	b. Control hag		
	d None of these		
27	U. Note of these		
57	Architecture of the microprocessor		
	 Architecture of the meroprocessor Properties of the programs being executed 		
	c. Size organization of the cache		
	d All of these		
38	The parity bits are used to check that a		
50	Two bit error		
	h Single hit error		
	c Multi bit error		
	d None of these		
39	Which causes the microprocessor to immediately terminate its present activity		
	a. RESET signal		
L			

	b. INTERUPT signal		
	c. Both		
	d. None of these		
40	RD stands for:		
	a. Read		
	b. Register		
	c. Request		
	d. Real		
41	DMA stands for:		
	a. Direct memory allocation		
	b. Direct memory access		
	c. Direct memory application		
	d. Direct memory acknowledgment		
42	In which the processor uses a protection of the memory address to represent I/O		
	ports:		
	a. Memory mapped I/O		
	b. I/O memory mapped		
	c. Both a and b		
	d. None of these		
43	Which is the components of computer:		
	a. System Bus		
	b. CPU		
	c. Memory Unit		
4.4	d. All of these		
44	Which is the parts of memory unit:		
	a. Processor memory		
	b. Main memory		
	C. Secondary memory		
15	a. All of these is consistent which has the microgram		
43	A computer which has the incroprocessor as is called as a incrocomputer.		
	c RU		
	d None of these		
46	How can we make computers work faster?		
	a. The fetch-execute cycle and pipelining		
	b. The assembly		
	c. Both A and B		
	d. None of these		
47	Which process information at a much faster rate than it can retrieve it from		
	memory:		
	a. ALU		
	b. Processor		
	c. Microprocessor		
	d. CPU		
48	The fetch-execute cycle is to use a system know as:		
	a. Assembly line		
	b. Pipelining		
	c. Cache		
	d. None of these		

49	Who is the determined by the time taken by the stages the requires the most		
	processing time:		
	a.	Clock period	
	b.	Flow through	
	c.	Throughput	
	d.	None of these	
50	ISA stands for:		
	a.	Instruct set area	
	b. Instruction set architecture		
	c.	Both a and b	
	d.	None of these	